alcohol poisoning
Resource Center



alcohol poisoning in the news

Death toll in Belgorod region alcohol poisoning rises to 30 

Itar-Tass - Oct 09 5:17 AM
BELGOROD, October 9 (Itar-Tass) - The number of persons who died of tainted alcohol poisoning in Russia's Belgorod region has increased to 30, the regional department of the Emergency Situations Ministry told Itar-Tass on Monday, noting that a total of 801 people have been hurt in the "alcohol" epidemic in Stary Oskol and Gubkin.

New statistics show alcohol violations up at UT 
News 8 Austin - Oct 09 3:10 PM
New crime statistics show alcohol violations have increased 28 percent on the University of Texas campus from 2004 to 2005.

New statistics show alcohol violations up at UT 
News 8 Austin - Oct 09 3:03 PM
A new study shows the number of alcohol-related violations have gone up on the University of Texas campus. The number of University of Texas students who have been arrested for violating liquor laws has increased 28 percent from 2004 to 2005.

Accused Brownsdale cat poisoner to serve community service By Josh Verges/Austin Daily Herald 
Austin Daily Herald - Oct 09 10:17 AM
News Call or email the Newsroom at (507) 434-2230. A felony charge against the Brownsdale man accused of poisoning stray cats will be dismissed as long as he completes community work service and remains otherwise law-abiding.

alcohol poisening



- signs of alcohol poisoning

- alcohol poisoning

The effects of alchol poisoning alcohol on the human body can take several forms.

Alcohol, specifically ethanol, is alcahol poisoning a potent psychoactive drug with a alcohol poisining range of side effects. The amount and circumstances alcohol poisning of consumption play a large part in determining the extent of intoxication; e.g., consuming alcohol after a heavy meal is less likely to alcohol poisonin produce visible Acohol Poisoning signs of intoxication than consumption on an empty stomach. Hydration also plays Alochol Poisoning a role, especially in determining the extent of hangovers. The concentration of alcohol in blood Alchool Poisoning is usually given by BAC.

Alcohol has a biphasic effect on the body, Alcool Poisoning which is to say that its effects change over time. Initially, alcohol generally produces feelings of relaxation and cheerfulness, Alohol Poisoning but further consumption can lead to blurred vision and coordination problems. Alcohl Poisoning Cell membranes are highly permeable Alcoho Poisoning to alcohol, so once alcohol is in the bloodstream it can diffuse into Aclohol Poisoning nearly every tissue of the body. After excessive drinking, unconsciousness can occur and extreme levels of consumption can lead to Alcohool Poisoning Alcphol Poisoning alcohol poisoning and death (a concentration in the blood stream of 0.55% will kill half the population). Death can also be Alcohil Poisoning caused by asphyxiation when vomit, a frequent result of overconsumption, blocks the Alcoholl Poisoning trachea and the individual is too inebriated to respond. An appropriate first Alcoohl Poisoning aid response to an unconscious, drunken person is to place them in the recovery Allcohol Poisoning position.

Intoxication frequently leads to a lowering of one's inhibitions, alcohol poisoning and intoxicated people will do things they would not do while sober, signs of alcohol poisoning often ignoring social, moral, and legal considerations. The term intoxication alcohol poisoning symptoms is typically used in legal proceedings symptoms of alcohol poisoning when some crime has been committed during a state of inebriation.


  • 1 Intoxication
  • 2 Action on treatment for alcohol poisoning the brain
  • 3 Blackouts
  • 4 Carcinogenic alcohol poisoning and treatment effects
  • 5 Metabolism of alcohol and action on the effects of alcohol poisoning liver
    • 5.1 Dehydration
    • 5.2 Hangover
  • 6 Beneficial symptoms alcohol poisoning effects of alcohol
  • 7 Hiccups
  • 8 Effects acute alcohol poisoning by dose
    • 8.1 Moderate doses
    • 8.2 Excessive doses
  • 9 See chronic alcohol poisoning also
  • 10 References
  • 11 External alcohol poisoning treatment links


Ethanol acts as a how to help someone with alcohol poisoning central nervous system depressant. In small amounts, ethanol causes a mild euphoria and removes inhibitions, and in rubbing alcohol poisoning large doses it causes death from alcohol poisoning drunkenness, generally at a blood ethanol content of about 0.1%. At higher concentrations, alcohol causes medical treatment for alcohol poisoning intoxication, coma and death. A blood ethanol content above 0.4% can be fatal, although regular alcohol poisoning cures heavy drinkers can tolerate somewhat higher levels alcohol poisoning in nicaragua than non-drinkers. Eight to ten drinks per hour is considered a fatal dosage for the average alcohol poisoning statistics 54 kg (119 lb.) person. alcohol poisoning strenght One drink is equivalent to one shot of 40% abv (80 proof) liquor, one 12 US fl oz (355 alcohol poisoning symtoms ml) beer, or one 4–5 US fl oz (120–150 ml) glass blood level for alcohol poisoning of wine.

In the UK, a "unit" of alcohol is 10 ml pure ethanol; so examples of cures for alcohol poisoning first responders treatment for alcohol poisoning drinks containing one unit of alcohol include one 25 ml measure of spirits (40% ABV), one 125 ml glass of weak wine (8% ABV), isopropyl alcohol poisoning one half-pint (284 ml) of weak (3.5% ABV) beer, or just mercury poisoning alcohol over scott krueger alcohol poisoning one third of a pint (about 200 ml) of "premium" (5% ABV) lager. (Note that in fact most wines are alcohol poisoning bac about 12% ABV, so would contain 1.5 units per 125 ml alcohol poisoning infants glass, and that many establishments serve wine by the 175 ml glass. A 175ml glass alcohol poisoning n children of 12% wine contains 2.1 units of alcohol).

To determine alcohol poisoning signs how many units an alcoholic drink contains a alcohol poisoning strength simple formula may be used:


Thus, a "shot" of 40% ABV liquor in the US alcohol poisoning teenagers (approximately 44ml vs. 1.5 US fl oz) is actually 1.76 units of alcohol ((40*44)/1000). As a result, one U.S. definition of alcohol poisoning "shot" of alcohol is how to cure alcohol poisoning almost double the amount experienced by the international community. As a result, "shot-takers" jason lewis and alcohol poisoning and nc in the United States should be aware of the differences between the two standards and adjust accordingly long term effects of alcohol poisoning to prevent alcohol medical effects of alcohol poisoning overconsumption. Alcoholism, addiction to alcohol, is a major public health problem. Alcoholics develop a number of health problems, with cirrhosis of the minor alcohol poisoning symptoms liver among the most significant. what happens when you die from alcohol poisoning Unlike withdrawal from some other drugs/intoxicants such as the opioids, withdrawal from heavy alcohol consumption can produce delirium tremens that what should i do if i suspect someone has alcohol poisoning can be fatal.

Any alcohol consumption during pregnancy carries a heavy risk of permanent mental and physical defects in the child, known as fetal alcohol syndrome.

Action on the brain

Ethanol is quickly absorbed into the bloodstream and reaches the brain. As a small molecule, it is able to cross the blood-brain barrier. For reasons that are still unknown and under scientific study, it then triggers the release of dopamine and endorphins into the bloodstream, which cause euphoria.


"Blacking out" or blackouts (a form of anterograde amnesia) are a common problem usually associated with heavy drinking. They are characterized by a person's inability to recall events which occurred during the period of blacking out. Blackouts can be avoided or prevented by drinking less, drinking water and eating. [1] A 2001 survey at Duke University found that 7.1% of respondents had experienced blackouts within 2 weeks of the survey. [2]

Carcinogenic effects

Main article: Alcohol and cancer

The International Agency for Research on Cancer (Centre International de Recherche sur le Cancer) of the World Health Organization has classified alcohol as a Group 1 carcinogen. Its evaluation states, "There is sufficient evidence for the carcinogenicity of alcoholic beverages in humans.… Alcoholic beverages are carcinogenic to humans (Group 1)."[1]

"Studies have suggested that high concentrations of acetaldehyde, which is produced as the body breaks down ethanol, could damage DNA in healthy cells. … Researchers at the National Institute on Alcohol Abuse and Alcoholism in Bethesda, Maryland, have added weight to this idea by showing that the damage occurs at concentrations of acetaldehyde similar to those in saliva and the gastrointestinal tract while people drink alcohol. Acetaldehyde appears to react with polyamines - naturally occurring compounds essential for cell growth - to create a particularly dangerous type of mutagenic DNA base called a Cr-Pdg adduct…"[2]

The strongest link between alcohol and cancer involves cancers of the upper digestive tract, including the esophagus, the mouth, the pharynx, and the larynx. Less consistent data link alcohol consumption and cancers of the liver, breast, and colon.

Upper digestive tract. Chronic heavy drinkers have a higher incidence of esophageal cancer than does the general population. The risk appears to increase as alcohol consumption increases. An estimated 75 % of esophageal cancers in the United States are attributable to chronic, excessive alcohol consumption.

Nearly 50 % of cancers of the mouth, pharynx, and larynx are associated with heavy drinking. According to mid-1980s U.S. case-control study, people who consumed an average of more than four drinks per day incurred a nine-fold increase in risk of oral and pharyngeal cancer, while there was about a four-fold increase in risk associated with smoking two or more packs of cigarettes per day. Heavy drinkers who also were heavy smokers experienced a greater than 36-fold excess compared to abstainers from both products.

Liver. Prolonged, heavy drinking has been associated in many cases with primary liver cancer. However, it is liver cirrhosis, whether caused by alcohol or another factor, that is thought to induce the cancer. In areas of Africa and Asia, liver cancer afflicts 50 or more people per 100,000 per year, usually associated with cirrhosis caused by hepatitis viruses. In the United States, liver cancer is relatively uncommon, afflicting approximately 2 people per 100,000, but excessive alcohol consumption is linked to as many as 36 % of these cases by some investigators.

Metabolism of alcohol and action on the liver

The liver breaks down alcohols into acetaldehyde, and then into acetic acid by the enzyme acetaldehyde dehydrogenase. Next, the acetate is converted into fats or carbon dioxide and water. The fats are mostly deposited locally which leads to the characteristic "beer belly". Chronic drinkers, however, so tax this metabolic pathway that things go awry: fatty acids build up as plaques in the capillaries around liver cells and those cells begin to die, which leads to the liver disease cirrhosis. The liver is part of the body's filtration system and if it is damaged then certain toxins build up, thus leading to symptoms of jaundice.

The alcohol dehydrogenase of women is less effective than that of men. Combined with the lower amount of water in women's bodies, this means that women typically become drunk earlier than men.

Some people, especially those of East Asian descent, have a genetic mutation in their acetaldehyde dehydrogenase gene, resulting in less potent acetaldehyde dehydrogenase. This leads to a buildup of acetaldehyde after alcohol consumption, causing the alcohol flush reaction with hangover-like symptoms such as flushing, nausea, and dizziness. These people are unable to drink much alcohol before feeling sick, and are therefore less susceptible to alcoholism. [3], [4] This adverse reaction can be artificially reproduced by drugs such as disulfiram, which are used to treat chronic alcoholism by inducing an acute sensitivity to alcohol.


Consumption of ethanol has a rapid diuretic effect, meaning that more urine than usual is produced, since ethanol inhibits the production of antidiuretic hormone.

Overconsumption can therefore lead to dehydration (the loss of water). It is impossible to replenish the body's fluids using only conventional alcoholic beverages. As these amounts of alcohol are consumed, the diuretic effect causes the body to lose more water than is contained in the beverage.


Main article: Hangover

A common after-effect of ethanol intoxication is the unpleasant sensation known as hangover, which is partly due to the dehydrating effect of ethanol. Hangover symptoms include dry mouth, headache, nausea, and sensitivity to light and noise. These symptoms are partly due to the toxic acetaldehyde produced from alcohol by alcohol dehydrogenase, and partly due to general dehydration. Dehydration causes the brain to shrink away from the skull slightly. The dehydration portion of the hangover effect can be mitigated by drinking plenty of water between and after alcoholic drinks. Other components of the hangover are thought to come from the various other chemicals in an alcoholic drink, such as the tannins in red wine, and the results of various metabolic processes of alcohol in the body, but few scientific studies have attempted to verify this. Consuming water between drinks is the best way to prevent or lessen the effects of a hangover. Another possible solution is to drink water to minimize the dehydrating effect of alcohol before sleeping.

Beneficial effects of alcohol

Several studies have shown that regular consumption of moderate amounts of alcohol (i.e., below recommended daily limits from US or UK sources) can lower the incidence of coronary heart disease and raise the level of high density lipoprotein cholesterol ("good cholesterol"). citation needed]

Moderate drinkers tend to have better circulatory system health and live longer than those who are heavy drinkers.

it should be noted though those studies mention narrow 'dosage window' which may vary from person to person depending on individual metabolic rate, food intake, and body mass, and totally ignore effects of alcohol on other systems.

See also: Alcohol consumption and health


Scientific research has proven that alcohol is also a major contributor to hiccupscitation needed]. When the body has reached its alcoholic limit, the body will use hiccups as a sign of its internal limit.

Effects by dose

Different concentrations of alcohol in the human body have different effects on the subject. The following lists the effects of alcohol on the body, depending on the blood alcohol concentration or BAC. For further references, refer: [5] [6] and [7].

Please note: the BAC percentages provided below are just estimates and used for illustrative purposes only. They are not meant to be an exhaustive reference; please refer to a healthcare professional if more information is needed.
  • Euphoria (BAC = 0.03 to 0.12 %)
    • Subject may become more self-confident or daring.
    • Their attention span shortens. They may look flushed.
    • Their judgement is not as good — they may express the first thought that comes to mind, rather than an appropriate comment for the given situation.
    • They have trouble with fine movements, such as writing or signing their name.
  • Excitement (BAC = 0.09 to 0.25 %)
    • Subject may become sleepy
    • They have trouble understanding or remembering things (even recent events). They do not react to situations as quickly (if they spill a drink they may just stare at it).
    • Their body movements are uncoordinated; they begin to lose their balance easily.
    • Their vision becomes blurry. They may have trouble sensing things (hearing, tasting, feeling, etc.).
  • Confusion (BAC = 0.18 to 0.30 %)
    • Profound confusion — uncertain where they are or what they are doing. Dizziness and staggering occur.
    • Heightened emotional state — aggressive, withdrawn, or overly affectionate. Vision, speech, and awareness are impaired.
    • Poor coordination and pain response. Nausea and vomiting often occur.
  • Stupor (BAC = 0.25 to 0.40 %)
    • Movement severely impaired; lapses in and out of consciousness.
    • Subjects can slip into a coma; will become completely unaware of surroundings, time passage, and actions.
    • Risk of death is very high due to alcohol poisoning and/or pulmonary aspiration of vomit while unconscious.
  • Coma (BAC = 0.35 to 0.50 %)
    • Unconsciousness sets in.
    • Reflexes are depressed (i.e., pupils do not respond appropriately to changes in light).
    • Breathing is slower and more shallow. Heart rate drops. Death usually occurs at levels in this range.
  • Death (BAC more than 0.50 %)
    • Alcohol causes Central Nervous System to fail, resulting in death.

Moderate doses

Although alcohol is typically thought of purely as a depressant, at low concentrations it can actually stimulate certain areas of the brain. Alcohol sensitises the N-methyl-D-aspartate (NMDA) system of the brain, making it more receptive to the neurotransmitter glutamate. Stimulated areas include the cortex, hippocampus and nucleus accumbens, which are responsible for thinking and pleasure seeking. Another one of alcohol's agreeable effects is body relaxation, possibly caused by heightened alpha brain waves surging across the brain. Alpha waves are observed (with the aid of EEGs) when the body is relaxed. Heightened pulses are thought to correspond to higher levels of enjoyment.

A well-known side effect of alcohol is lowering inhibitions. Areas of the brain responsible for planning and motor learning are dulled. A related effect, caused by even low levels of alcohol, is the tendency for people to become more animated in speech and movement. This is due to increased metabolism in areas of the brain associated with movement, such as the nigrostriatal pathway. This causes reward systems in the brain to become more active, and combined with reduced understanding of the consequences of their behavior, can induce people to behave in an uncharacteristically loud and cheerful manner.

Behavioural changes associated with drunkenness are, to some degree, contextual. A scientific study found that people drinking in a social setting significantly and dramatically altered their behaviour immediately after the first sip of alcohol, well before the chemical itself could have filtered through to the nervous system. Likewise, people consuming non-alcoholic drinks often exhibit drunk-like behaviour on a par with their alcohol-drinking companions even though their own drinks contained no alcohol whatsoever.

Excessive doses

The effect alcohol has on the NMDA receptors, earlier responsible for pleasurable stimulation, turns from a blessing to a curse if too much alcohol is consumed. NMDA receptors start to become unresponsive, slowing thought in the areas of the brain they are responsible for. Contributing to this effect is the activity which alcohol induces in the gamma-aminobutyric acid system (GABA). The GABA system is known to inhibit activity in the brain. GABA could also be responsible for the memory impairment that many people experience. It has been asserted that GABA signals interfere with the registration and consolidation stages of memory formation. As the GABA system is found in the hippocampus, (among other areas in the CNS), which is thought to play a large role in memory formation, this is thought to be possible.

Blurred vision is another common symptom of drunkenness. Alcohol seems to suppress the metabolism of glucose in the brain. The occipital lobe, the part of the brain responsible for receiving visual inputs, has been found to become especially impaired, consuming 29 % less glucose than it should. With less glucose metabolism, it is thought that the cells aren't able to process images properly.

Often, after much alcohol has been consumed, it is possible to experience vertigo, the sense that the room is spinning (referred to in certain circles as 'The Spins'). This is associated with abnormal eye movements called nystagmus, specifically positional alcohol nystagmus. In this case, alcohol has affected the organs responsible for balance (vestibular system), present in the ears. Balance in the body is monitored principally by two systems: the semicircular canals, and the utricle and saccule pair. Inside both of these is a flexible blob called a cupula, which moves when the body moves. This brushes against hairs in the ear, creating nerve impulses that travel through the vestibulocochlear nerve (Cranial nerve VIII) in to the brain. However, when alcohol gets in to the bloodstream it distorts the shape of the cupola, causing it to keep pressing on to the hairs. The abnormal nerve impulses tell the brain that the body is rotating, causing disorientation and making the eyes spin round to compensate. When this wears off (usually taking until the following morning) the brain has adjusted to the spinning, and interprets not spinning as spinning in the opposite direction causing further disorientation. This is often a common symptom of the hangover.

Another classic finding of alcohol intoxication is ataxia, in its appendicular, gait, and truncal forms. Appendicular ataxia results in jerky, uncoordinated movements of the limbs, as though each muscle were working independently from the others. Truncal ataxia results in postural instability; gait instability is manifested as a disorderly, wide-based gait with inconsistent foot positioning. Ataxia is responsible for the observation that drunk people are clumsy, sway back and forth, and often fall down. It is probably due to alcohol's effect on the cerebellum.

Extreme overdoses can lead to alcohol poisoning and death due to respiratory depression.

A rare complication of acute alcohol ingestion is Wernicke encephalopathy, a disorder of thiamine metabolism. If not treated with thiamine, Wernicke encephalopathy can progress to Korsakoff psychosis, which is irreversible.

Chronic alcohol ingestion over many years can produce atrophy of the vermis, which is the part of the cerebellum responsible for coordinating gait; vermian atrophy produces the classic gait findings of alcohol intoxication even when its victim is not inebriated.

Severe drunkenness and diabetic coma can be mistaken for each other on casual inspection, with potentially serious medical consequences for diabetics. The major physical finding they share is the sickly-sweet odour of ketosis on the breath; alcoholic ketosis and diabetic ketosis are both marked by the presence of acetone and other ketones in the bloodstream, although the ketones are produced by different metabolic pathways in each disorder. Measurement of the serum glucose and ethanol concentrations in comatose individuals is routinely performed in the emergency department and easily distinguishes the two conditions.

See also

  • Drinking culture
  • Ethanol
  • Alcoholism
  • Hangover
  • Alcohol consumption and health (focusing on long-term effects, both positive and negative)
  • Alcoholic beverages — recommended maximum intake


  1. ^ IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Volume 44 Alcohol Drinking: Summary of Data Reported and Evaluation
  2. ^ New Scientist article "Alcohol's link to cancer explained"

External links

  • Alcohol and the Human Body
  • Global Status Report on Alcohol 2004 by the World Health Organization.
  • Impacts of alcohol consumption on human health - a summary of the above WHO report by GreenFacts.
Ethanol | History of alcohol | Brewery | Health | Alcohol advertising | Drugs | Drinking culture | Drunkenness | Breathalyzer | Hangover | Homebrewing | Winemaking
Fermented beverages
Wine | Beer | Ale | Rye beer | Corn beer | Wheat beer | Sake | Sonti | Makkoli | Tuak | Cider | Apfelwein | Perry | Basi | Pulque | Plum wine | Pomace wine | Mead | Kumis | Huangjiu
Distilled beverages
Scotch whisky | Irish whiskey | Canadian whisky | Bourbon whiskey | Wheat whisky | Rice: shochu (Japan) | soju (Korea) | Huangjiu | Baijiu (China) | Fruits: brandy | Cognac | gin | pisco | rakia | Apples: cider | apfelwein | applejack | Calvados | Sugarcane / Molasses: rum | cachaça | aguardiente | guaro | Agave: tequila | mezcal | Plums: slivovitz | ţuică | palinka | Pomace: grappa (Italy) | Trester (Germany) | marc (France) | zivania (Cyprus) | tsipouro (Greece) | rakia (Balkans) | Potato: vodka | aquavit | brennivín | Milk: Araka
Other beverages
Cocktails | Alcopop
Search Term: "Effects_of_alcohol_on_the_body"

- alcohol poisoning symptoms

alcohal poisoning